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Classification of solutions for gauge fields on group manifolds 
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250, 2000 Rosario, Argentina 
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Abstract. We impose the factorisation condition on a field theory constructed on a (super) 
group manifold. For the bidimensional Euclidean and pseudo-Euclidean groups the 
pseudo-connection I-forms verifying the factorisation condition are classified in 
diffeomorphically equivalent classes. For the bidimensional Euclidean group we show the 
existence of solutions not diffeomorphically equivalent to those proposed by Ne’eman and 
Regge. 

1. Introduction 

The (super) group manifold approach was developed by Ne’eman and Regge (1978) 
to construct supersymmetric gauge theories, gravity and supergravity, from a 
geometrical point of view. In this geometrical formalism the gauge fields (or Yang-Mills 
potentials) (Ne’eman and Regge 1978, D’Auria et al 1980, D’Auria and Frt  1982, 
Castellani et a1 1983) are a set of pseudo-connection 1-forms p A  defined on a (super) 
group manifold G, where the index A runs in the adjoint representation of G. 

The ordinary spacetime of these theories is a submanifold of the manifold G, and 
the supersymmetric gauge transformation are diff eomorphism in the (super) group 
manifold G. In these theories it is also assumed that the group manifold G has a 
bosonic subgroup H and that the physical solutions for the pseudo-connections 1-forms 
p A  are factorised on the pair (G, H). 

In a previous work (Foussats et a1 1986) we have obtained the pseudo-connections 
p A  in terms of a connection defined on the tangent bundle of the (super) group 
manifold G. 

The pseudo-curvatures of these theories are defined by 

where CpSc are the (graded) structure constant of the Lie algebra of the (super) group 
G. 

The tangent vectors TA, dual of the 1-forms p A ,  satisfy 

PA(TB) = SC‘, 

[ T A ,  T B )  = ( c 2, + R.%) TO 

where R.2B = R D (  TA, TB). 
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An essential assumption for these theories (Ne'eman and Regge 1978a, b)  is the 
factorisation condition 

A, B =  1,.  . . , d i m G  

H = 1 , .  . . , d i m  H 

where H is an index running in the adjoint representation of a bosonic gauge subgroup 
H of the (super) group manifold G. 

Using local coordinates x P ( p  = 1, . , . , dim G) for the (super) group G, the factorisa- 
tion condition (1.4) is equivalent to the following equations for the tangent vectors T A :  

(1.5) T&(apT;)  - Tg(apTg)  = CP,,T'; B, D =  1 , .  . . , d i m G  

H = 1 , .  . . , d im H 

which can be deduced from equations (1.3) and (1.2). 
Using the right action of the subgroup H on the (super) group G, it is possible to 

define the coset G / H .  Choosing a representative element A(z) for each z belonging 
to a subset U of the coset G /H,  then for an element g e G  such that g.HE U, it is 
possible to write 

g = A(z).x(g) (1.6) 

where 

x :  U + H c G .  

Using the map x, Ne'eman and Regge (1978a, b) have obtained a solution for the 

p A ( g )  = x * u A + [ A d  x - ' ( s ) l $ ~ ~ ( z )  (1.7) 

where u A  are the left-invariant 1-forms of the (super) group manifold G, and p B ( z )  
are arbitrary I-forms defined on the coset G /H.  

According to equation (1.7), the degrees of freedom remaining after using equation 
(1.4) are the fields p '( z)  defined on the coset G /H.  However, equation (1.7) is only 
a particular solution for equation (1.4). 

Having in mind the functional quantisation of these theories, where the fields are 
to be considered in all the group manifold G rather than on the coset G / H ,  it is of 
interest to have the general solution of equation (1.4). 

If the generating functional is assumed to be invariant under diffeomorphism on 
the (super) group manifold G, we would like to classify the 1-forms satisfying equation 
(1.4) in sets of diffeomorphically equivalent solutions. The classification will depend 
on the global structure of the (super) group manifold G which is considered. 

In 0 2, we perform the classification of the different factorised pseudo-connection 
1-forms for the bidimensional Euclidean group E(2). For this case we prove that the 
different classes of solutions are classified by a non-vanishing integer number k and 
a rational number m/n. For m # 0, we obtain classes of solutions which are not 
diffeomorphically equivalent to those previously obtained by Ne'eman and Regge. 
Actually, the class of solutions obtained by these authors correspond to the value m = 0 
in our classification. 

In 0 3, we give the classification for the case of the bidimensional PoincarC group, 
pointing out that there is only one equivalent class of solutions. 

factorisation condition (1.4), given by 
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2. Classification of factorised solutions in the group E(2) 

We we now going to consider the bidimensional Euclidean group manifold G = E(2), 
which is topologically equivalent to R x R x S ’ .  The subgroup H is in this case the 
group SO(2). A convenient representation for an element g e  E(2) is 

coscp sin cp x 

g=[-.il. c0;cp (2.1) 

where the parameters (x, y )  run in R x R and cp is the parameter of the circle SI. 
Expanding g-’ d g  in terms of the generators ofthe representation (2,1), it is possible 

to obtain the left invariant 1-forms defined on the group manifold E(2) and they are 

w ’ = d x  cos cp -dy sin cp 

w’=dx sin cp + d y  cos cp 
112) - -w121 I - w = w  - - dcp. 

These left invariant 1 -forms verifies the following Maurer-Cartan equations: 

dw’=-W/\w’ W - W A W 1  dw = O .  (2.3) d 2 -  

Using equation (1.7) we can write the solutions of the factorisation condition 
proposed by Ne’eman and Regge (1978) for this case: 

p ‘  = a(x,  y )  cos cp - b(x, y)  sin cp 

p 2  = a ( x ,  y )  sin cp + b(x, y )  cos cp 

p =dcp+c(x,y)  

(2.4) 

where a(x,  y ) ,  b(x, y )  and c(x, y )  are arbitrary 1-forms depending on the parameters 
(x, y )  of the coset G / H  = E(2)/S0(2).  These arbitrary 1-forms are determined by the 
remaining field equations of the group manifold formalism (inner equations plus 
rehonomic conditions, see Castellani er a1 1983). 

Equations (1.5) in this case are 

where T:, T i  and Tp are the components of the tangent vector fields TI,  T2 and T, 
which are the duals of the 1-forms p ’ ,  p2  and p respectively. 

For each choice of vector field T, it is possible to obtain the solution of equation 
( 2 . 5 ) .  With this purpose, we define 

A 1  A 1  TP=- 1 -J* (T;-iTP) TP =z (T,P -iT’;), ( 2 . 6 )  

Tp(d,f$’) - fy(a ,TP) = -if’; T”(d,f;) - f;(a,TP) =if;. (2.7) 

Replacing (2.6) in ( 2 . 5 )  we obtain 

The vector field T cannot vanish on E(2), because together with the vector fields 
T I  and T2 they give a basis for the tangent space to the group manifold E(2). Therefore 
it is possible to rewrite equation (2.7) using coordinates (XI, x2, x’) such that 

T = a/ax3.  (2.8) 
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The general solution for (2.7) is 

f i  = f f ( x ’ ,  x’) exp(-ix3) f P - f P  - *(XI, x’) exp(ix3) (2.9) 

where fl and fi are arbitrary functions of x 1  and x2. 

beginning of this section by the invertible functions 
The coordinates (XI, x2, x3) are related to the coordinates (x, y ,  c p )  defined at the 

x = X(XI, xz, x’) y = y(x’ ,  x’, x’) qY = cp(X’, x2, x’). (2.10) 

Fixing the coordinates X I  and x2 in (2.10), we obtain one integral curve of the 

The vector fields (2.8) and (2.9) can now be written using coordinate components 

T” = axlax’ T’ = aylax’ T“ = acp/dx3 (2.11a) 

vector field T. 

(4 Y ,  Q): 

(2.1 1 b )  

(2.11c) 

The field components in equations (2.11) must be periodic in the cp variable, and 
therefore it is necessary to verify 

XYX, y ,  cp + 2.ir) = x’(x, Y ,  cp) 

XZ(X, Y,  cp +2.ir) = x2(x, Y ,  9) (2.12) 

x3(x, y, cp+22rr)=2k2rr+x3(x,y, c p )  

for a non-vanishing integer number k. 
The classification of the different solutions of equations (2.1 1) for the factorisation 

condition (1.4), is equivalent to the classification of the diffeomorphically equivalent 
vector field T. This is a consequence of the invariance under diffeomorphisms A : G + G 
of the factorisation condition (1.4) 

* TH R A ( k ) )  =A;ITH R A ( A * p ) .  (2.13) 

We start considering the possible integral lines corresponding to the tangent vector 
field T defined on the group manifold E(2) = R x R x S’. There are two different kinds 
of integral lines. 

(1) Lines which do not wind around the circle SI. This kind of line may be closed 
or opened. The closed lines should be excluded because they would give rise to a field 
T which vanishes in some point of the manifold. 

O = A  (1 - -4 
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( 2 )  Lines winding n times around the circle SI. This kind of line may also be 
closed or opened. If the lines are open, with an adequate diffeomorphism it is possible 
to transform the corresponding field into a constant component field pointing along 
one of the non-compact coordinates, say for example T = a / a x .  

Therefore, it is not possible to verify the periodicity condition (2 .12) ,  and this kind 
of field must also be excluded. 

It remains to consider a tangent vector field T with closed integral lines, winding 
n times around the circle SI. For this case, the parametric equations (2 .10)  for the 
integral lines should have a period L ( x ' ,  x') in the parameter x': 

x ( x ' ,  X I ,  x 3 +  L ( x ' ,  x ' ) )  = x ( x ' ,  x', x 3 )  

y ( x ' ,  x 2 ,  x 3 +  L ( x ' ,  x ' ) )  = y ( x ' ,  x', x') 

cp(x', x', x' + ~ ( x ' ,  x ' ) )  = 2 n r  + cp(x', x', x ' ) .  

(2 .14)  

Using (2 .12)  and (2 .14) ,  we obtain 

L = 2 k n r .  (2 .15)  

Using coordinates ( x ,  y ,  cp ), a diff eomorphism A : E( 2 )  + E ( 2 )  is given by three 
functions Ax, Ay and A' satisfying the periodicity conditions 

A"(X,Y, Q + 2 T ) = A x ( X , Y ,  C P )  

Y ,  cp + 2 ~ )  = A'(x, Y ,  (0) 

A ' ( x , ~ ,  c p + + r ) = 2 1 r + A ' ( x , y ,  c p ) .  

(2 .16)  

Using (2 .16)  and (2 .14)  to transform the integral lines described by (2 .10) ,  we 
obtain new integral lines with the same integer numbers k and n. 

Therefore, we have proved that integral lines, having different values of the integer 
number k or n, are not diffeomorphically equivalent. 

There is also another number to be considered in the classification of the tangent 
vector field T. For closed integral lines winding n times around the circle S ' ,  we can 
obtain a map of the plane cp = 0 on itself. Starting from a point ( x ,  y ,  cp = 0) we can 
move along the integral line passing through this point until we arrive at the intersection 
of this line with the plane cp = 21r. This intersection has an equivalent point in the 
plane Q = 0. In this way we obtain a map of the plane cp = 0 into itself. Calling M to 
this map, and taking into account that the integral lines close after winding n times 
around the circle S ' ,  we deduce that applying n times the map M is equivalent to a 
rotation of angle 2 m r  of the plane cp = 0, being m an integer number 

( M ) "  = R ( 2 m r ) .  (2 .17)  

Integral lines having the numbers k, n and m defined by (2 .12) ,  (2 .15)  and (2 .17)  
can be transformed by an adequate diffeomorphism into helical lines described by 

(2 .18)  
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The corresponding vector field T is 

ax 1 m 
T"=,= ax - - - y  k n 

(2.19) 

For different values of the numbers k and m/n, (2.19) gives the components of 
vectors T which are the representative of different equivalence classes. 

Using (2.6), (2.18) and (2.19) in equations (2.11) we can determine the (x, y, c p )  
components of the tangent vector fields T l ,  T2 and T. Finally, it is possible to obtain 
the following expressions for the dual 1-forms p ' ,  p 2  and p :  

p 1  = a ( x ,  y, c p )  cos kcp - b ( x ,  y, c p )  sin kcp 

p 2  = a ( x ,  y, c p )  sin kcp + b ( x ,  y, c p )  cos kcp 

p = kd9 + c ( x ,  Y, c p )  

where a, b and c are 1-forms defined by 

(2.20) 

(2.21) 

In the last expressions a , ,  a 2 ,  b ,  , b2 ,  c ,  and c2 are arbitrary functions and 

r = ( x 2 + y 2 ) 1 ' 2  8 = tan-'(y/x). (2.22) 

We note that choosing m = 0, the pseudo-connections (2.20) are the 1-forms also 
obtained by using the expression (1.7) given by Ne'eman and Regge (1978a, b). 

3. Classification of factorised solutions for the bidimensional Poincare group 

In this case, the group manifold G is the bidimensional PoincarC group, and it is 
topologically equivalent to R x R x R. The subgroup H is the Lorentz group SO( 1, 1). 

A representation for an element g of the PoincarC group is given by 

(3.1) 
0 1  

g =  -sinh 7 cosh 7 x 

cosh t) = (1 -P2)-1'2 sinh 7 = p (  1 - P2)-1'2 P = v x / c  

where the parameters t and x run in R x R and 7 is defined by 

- c < U, < 0. 

I cosh 7 -sinh 7 

( o  

(3.2) 
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In this case, the left-invariant 1-forms are 

w o  = -dt cosh 7 + dx sinh 7 

w I  = -dt sinh 7 + dx cosh 7 

= = = -d7. 

Using (1.7) we obtain a particular solution for the factorisation condition 

po = a (  t ,  x )  cosh 7 + b( t ,  x )  sinh 77 

p 1  = a ( ? ,  x )  sinh 7 +  b(t, x )  cosh 7 

/L = pol = -dv + C (  t ,  X )  

(3.3) 

(3.4) 

where a (  t ,  x) ,  b( t, x )  and c( t ,  x )  are arbitrary 1-forms depending on the parameters 
( t ,  x )  of the coset G /  H. 

Equations (1.5) in this case are 

Tpd,T,P - TgarTP = - TY TpapT:  - Tfd,TP = -T,P (3.5) 
where T; ,  TY and T P  are the components of the tangent vector fields To, TI and T, 
which are the duals of the 1-forms po, p 1  and p respectively. 

As in the previous section, for each choice of the vector field T, it is possible to 
obtain the solution of equation (3.5). 

We define the following new tangent vector fields: 

&= ( i / f i ) ( ~ ~ +  T,) ' f l = ( l / f i ) ( T o -  TI) (3.6) 

T = ala?. (3.7) 

F P -  - f P  o(xo, x ' )  exp(-x2) 

and then we choose coordinates (xo, x' ,  x2)  in such a way that the vector T becomes 

Using (3.6) and the coordinate transformation which lead to (3.7), we obtain the 

?Y =ff(xo,  XI) exp(x2) (3.8) 

Using the coordinates ( t ,  x, q), related to the coordinates (xo, XI, x') by invertible 

following solution: 

where fl and fl are arbitrary functions depending on xo and X I .  

functions, we also obtain- 

T' = at/ax2 T" = ax/ax2 T q  = a7/ax2 (3.9a) 

(3.9b) 

(3.9c) 
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In order to perform the classification of the possible non-equivalent solutions for 
the vector field T, we note that there is no periodicity conditions on the parameters 
( t ,  x, 7) of the manifold, and therefore there is only one equivalence class of solutions. 
Choosing as a representative of this class the following vector field 

(3.10) 

Using equation (3 .6)  we obtain the (t,  x, 7) components of the vector fields To 

The corresponding pseudo-connection 1-forms are 
and TI. 

po = a( t, x)  cosh 7 + b( t, x) sinh 7 

p ’ = a( t, x)  sinh 7 + b( t ,  x)  cosh 7 (3.12) 

p =pol  = - d 7 +  c(t ,  x )  

where a( t ,  x), b(t ,  x) and c ( t ,  x) are arbitrary 1-forms depending on the parameters 
( t ,  x), and they are determined by the remaining equations of the group manifold 
formalism. 

4. Conclusions 

It was suggested by Ne’eman and Regge (1978a, b) that if the pseudo-connection 
1 -forms are infinitesimally close to the factorised solutions ( 1.4), this solution should 
be diffeomorphic to (1.4). However, depending on the global properties of the group 
manifold, there could be other solutions for the factorisation condition. 

For the group manifold E(2), we have proved that a non-vanishing integer number 
k and a rational number mln classify the equivalence classes of solutions. For m = 0 
the factorised solution proposed by Ne’eman and Regge is obtained. The existence 
of different equivalence classes is related to the periodicity conditions imposed by the 
compact parameter of the bosonic subgroup H = SO(2) of the group manifold G = E(2). 

For the bidimensional Poincark group only one equivalence class of solutions is 
obtained. All the solutions for this case are diffeomorphic to the one obtained from 
the factorised solutions (1.4). 

For the realistic four-dimensional PoincarC group there are compact parameters 
associated to rotations in the three-dimensional space. Therefore it is expected to be 
different equivalence classes. This work is in progress and will be the subject of a 
future publication. 
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